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ABSTRACT

The modeling and active control of acoustic pressure in a 2-D cavity with a flexible bound-
ary (a beam) is considered. Control is implemented in the model via piezoceramic patches
on the beam which are excited in a manner so as to produce pure bending moments. The
incorporation of the feedback control in this manner leads to a system with an unbounded
input term. Approximation techniques are discussed and by writing the resulting system as
an abstract Cauchy equation, the problem of reducing interior pressure fluctuations can be
posed in the context of an LQR time domain state space formulation. Examples illustrating
the dynamic behavior of the coupled system as well as demonstrating the viability of the
control method on a variety of problems with periodic forcing functions are presented.
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1 Introduction

An important problem in the study of structural acoustics involves the control of noise
which is being generated by the vibration of an elastic structure. An example of this is
the transmission of sound through an airplane fuselage due to low frequency high amplitude
exterior acoustic fields. The need for lighter materials and the development of new fuel
efficient turboprop engines has reduced the transmission loss and increased the acoustic and
vibration levels thus causing the noise control problem to become a significant impediment
to efficiency in recent ycar:.

One means of attempting to decrease the noise levels has been through the use of pas-
sive noise control techniques which r, ",d on stiffened structures and material and acoustic
damping. In many cases, the increa d weight offset the advantages obtained through the
use of the new engines and lighter materials.

The active control of noise in this setting has been studied both in a frequency domain
setting [11, 12, 13, 16, 17, 19] and from an infinite dimensional state space time domain
approach (PDE approach) [1, 4, 5, 10]. Control techniques in these works range from the use
of acoustic point sources which generate appropriate secondary pressure waves that optimally
interfere with the offending primary pressure wave to the alteration of structural dynamics
through applied point forces and bending moments. In this latter case, the actuators range
from electromagnetic drivers to piezoceramic patches.

In this work, we continue the study of a time domain state space formidation in which the
active control is implemented via piezoceramic patches which are bonded to the boundary
of the acoustic cavity (a more theoretical background for some of the results in this work
can be found in [1]). In this way, we can take advantage of the natural "feedback" loop
which is due to the coupling of the structural vibrations and the acoustic fields. Moreover,
the piezoceramic patches are light, can be bonded directly to the elastic surface and are
relatively cheap to manufacture.

The example we consider consists of an exterior noise source which is separated from
an interior chamber by an elastic plate. This plate transmits noise or vibrations from the
exterior field to the interior cavity via fluid/structure interactions thus leading to the for-

mulation of a system of partial differential equations consisting of an acoustic wave equation
coupled with elasticity equations for the plate. Control is implemented in the example via
piezoceramic patches on the plate which are excited in a manner so as to produce pure bend-
ing moments which then affect the bending components of the elasticity equations. Because
the incorporation of the feedback control is through actuators covering only sections of the
boundary, the resulting system contains an unbounded input term. Experiments are being
designed and carried out at NA8A Langley Research Center in which the interior cavity is
taken to be cylindrical with a circular elastic plate aik sectorial patches.
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As a first step toward developing an effective linear quadratic regulator (LQR) state space
control methodology for near field acoustic problems of this type, it is useful to consider a
simplified but typical model consisting of a 2-D interior cavity with an elastic beam at one
end (see Figure 1). Here .T represents a perturbing force on the beam due to an exterior
noise source. This in turn causes fluctuations in the interior acoustic pressure field and hence
unwanted noise. The goal in the control problem is to optimally reduce the interior pressure
deviations by effecting a force distribution on the beam that decouples the cavity acoustic
response from the beam response or primary excitation.

In Section 2, a model set of differential equations for the problem is given and the math-
ematical framework needed to pose the control system in variational form is discussed. The
finite dimensional approximation of the control problem is presented in Section 3. After
discussing suitable choices for the bases, the discrete system is formulated as a finite dimen-
sional Cauchy equation. With the problem in this format, the control gains can be obtained
in terms of the solution of the algebraic Riccati equation. Section 4 contains examples
demonstrating both modeling and control results. The first example illustrates the dynamic
behavior of the coupled system with the next three examples demonstrating the viability of
the conitrol method oi a variety of problems with periodic forcing functions.

yr

ail ai 2  'o\ /
0 a x

Figure 1. Acoustic chamber with piezoceramic patches.
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2 Mathematical Model

When describing the interaction between the acoustic wave motion in the fluid and the
vibration of the structure, both the fluid velocity, 7, and the acoustic pressure, p, (the
deviation from the mean pressure at equilibrium) are physically significant. In order to
simplify the resulting equations, it is useful to introduce a velocity potential € which is a
complex-valued function from which the characteristic values V and p can be calculated
by means of simple differential equations. The velocity potential is determined by the
relation i6(t,x,y) = -VO(t,x,y) and the pressure is related to this velocity potential by
p(t, x, y) = pf e(t, x, y) where pf is the equilibrium density of the fluid.

For acoustic waves with small amplitude, both the potential and the pressure satisfy the
undamped wave equation with uniform speed of sound c in the fluid [14, 15]; hence

Ott = c2 A4 (x,y) E Q (t) ,t > 0.

The boundaries on three sides ol the variable cavity Q(t) are taken to be "hard" walls thus
leading to the zero normal velocity boundary conditions

VOh = 0 (,y) F ,t > 0

where h is the outer normal. It is assumed that the perturbable boundary consists of an
impenetrable fixed-end Euler-Bernoulli beam with Kelvin-Voigt damping. If w(t, x) is used
to denote the transverse displacement of the beam with linear mass density pb, the equations
of motion are

PbWtt + -- 2M(t, x) = -pf ¢t(t, x, w(t, x)) + f(t, x) 0 < X < a
t> 0, (2.1)

Ow Ow

W(t,0) =Ow (t,0) = w(t, a) = -(t, a) = 0 t > 0
19X Ox

where M(t, x) is the internal moment and f is the external applied force due to pressure from
an exterior noise field. For an uncontrolled beam with Kelvin-Voigt damping, the moment
contains both strain and strain rate components and is given by

02w 03wM(t, x) = El- ; + CDI I-2t

The final coupling equation is the continuity of velocity condition

w,(t,x) = VO(t,x,w(t,x)). -h, 0< x <a,t> 0 (2.2)

which results from the assumption that the beam is impenetrable to fluid. Under an as-
sumptio ,. small displacements (w(t, x) = zb(t, x) + b where tb = 0) which is inherent in
the Euler-Bernoulli formulation. the beam equation in (2.1) can be approxim-ted by

02
PbWtt + -jM(t ,x) = -Pf [00t,x,0) + Ot(t,x,0)w] + f(t,x)
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while (2.2) can be approximated by

wt(t, x) = V(t,x, 0) -h + (VOY(t, x, 0)w) .

To first order, these last two equations can be approximated by dropping the higher order
terms -pj¢ty(t,x,O)w and (VO,(t,x,O)w) fi. Then upon approximating the domain Q(t)
by the fixed domain Q = [0, a] x [0, 1], we obtain the approximate uncontrolled model

Ott = c 2A (1-, Y) E Qi t > 0,

V.'h = 0 (X,y) G P ,t > 0,

j-(t,,0) -t(t,x) 0< x <a ,t >0,

02  02 O tw 0W 0 < x < a , (2.3)
PbWtt + - EI-x + CDI - t =- (t,x,0) + f(t,x )OX2 \OX2 Ox 2 t)

ow D W
w(t, 0) = -(t, 0) = w(t, a) = -(t a)=0 t>0

0(0, x, y) = o(x, y) , w(0, a) = Wo(X)

t(0, x, y) = I(x, y) , wt(o, a') = W(x)

For control of structural vibrations and the acoustic pressure field in this model, s piezo-
ceramic patches are attached to the beam as shown in Figure 1. These patches are excited
in a manner so as to produce pure bending moments ([6, 7, 9]) (see Figure 2). If H is used
to denote the Heaviside function, the model for the controlled beam can be written as

a2 02w O3w "

PbWtt + - EI( + CDI d + Pl t(t,XO)
Ox, Ox(xt fk tx0

-2 ' B 
(2.4)

_ O 2 I" 3, Yui(t) [I(x - ail) - H(x - ai2)] + f(t,x)
i=I

Here u,(t) is the voltage applied to the it" patch, K' is a parameter which depends on
the geometry and piezoceramic material properties, T is the patch thickness and d3l is the
piezoelectric strain constant (sec [6, 7]). It should be noted that the incorporation of (2.4)
into (2.3) leads to a system with an unbounded input term since it involves the second
derivative of the leaviside function.
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Figure 2. Piezoceramic patch excitation.

In order to pose this problem in a manner which is conducive to approximation and
control, the state is taken to be z = (0,w) in the state space II L 2(fQ) x L2 (F0 ). Here
L2(Q) is the quotient space of L2 over the constant functions. The use of the quotient space
results from the fact that the potentials are determined only up to a constant.

To provide a class of functions which are considered when defining a variational form

of the problem, we also define the Hilbert space V = fti(Q) x H(F 0 ) where h!(Q) is
the quotient space of Il' over the constant functions and fIo(F 0 ) is given by H0(F 0 ) =

{C E H'(ro ) : (x) = Oi'(x) = 0 at x = 0, a}.
A complete discussion concerning the first and second order weak or variational forms of

the control system is given in [1]. For our purposes here, it suffices to note that from (2.3)
and (2.4), it follows that the second-order system in variational form is given by

I4f 4 Ottdw + , PbWttldY

+ j, pjV V~dw + j EID2 wD 2 qd-y

f{CDID wtDT + pj(t-q - wt)d(2.5)

-/ EK J d31 Eui(t)(H,1 - fH2 )D 2 rl-d

0 =

+ f fild-y

for all (qj) in V. In order to simplify the above expression, we have adapted the notation
It 1 (x) H(x - aij), i = 1, ..... s, j = 1,2. The system can be written in first-order form
by defining the product spaces V = V x V and 7- = V x ]I and taking the state to be
Z = (, w, , b). Note that the state now contains a multiple of the pressure since p = pf.
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The first-order variational form is

L (k)t dw+ j Pb(W)ldY

+ j pfV¢" V~dw + J EID2 uID2 d-t

+ J{CID 21D27 + pf( q7 - b,)}d(2.'0 (2 6)

fE KBd31
E T- E ui(t)(Hii - Hi2)D2 rd'j

+ Tfrdy

for all ( ,7) in V. Again, a more complete discussion concerning the formulation of the
first-order system in weak form is given in [1].

3 Finite Dimensional Approximation and Control

The problem (2.6) is now in a form which is amenable both to approximation and control. As
shown in [1], the infinite dimensional system can be formally written as an abstract Cauchy
equation, and periodic infinite dimensional control results similar to those found in [81 can
be applied (see also [2, 3]). Approximate feedback gains (and hence controlling voltages) can
be obtained by using a standard Galerkin approach in which one chooses a sequence of finite
dimensional subspaces WU C 7- with projections pN : R 7-/N. In order to guarantee
the convergence of the approximate gains to those of the infinite dimensional system, it is
sufficient to impose various conditions on the original and approximation systems. These
hypotheses include convergence requirements for the uncontrolled problem as well as the re-
quirement that the approximation systems preserve stabilizability and detectability margins
uniformly.

Cubic splines are used as a basis for the beam since they satisfy the smoothness re-
quirements as well as being easily implemented when adapting to the fixed-end boundary
conditions and patch discretizations. Letting {Bt '} 1 denote the cubic splines which have
been modified to satisfy the boundary conditions (see (11 for details), the corresponding n- 1
dimensional approximating subspace is given by Hb' = span {B!}> x and the approximate
beam solution is taken to be

n-I
wN(t ') -= Z Nw(t)Bn(x)

i--1

The 2-D cavity basis is taken to be {B2}1= where B-(x, y) is the tensor product of 1-D
Legendre polynomials which have been scaled by transformation to the x and y intervals [0, a]
and [0, f], respectively. The total number of cavity basis functions, m = (mr + 1). (m, + 1) - 1,
reflects the deletion of the constant function so as to guarantee that the set of functions is
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suitable as a basis for the quotient space. No boundary modifications are needed for the
Legendre basis since natural boundary conditions occur on all sides of the cavity. The
n dimensional approximating subspace is then taken to be H in = span IBinI and the
approximate cavity solution is given by

ON(t'X'Y) = (t)B (x,y) .
i=l1

The approximating state space is then taken to be HN = HT x H' where N = mr+n-1,
and the product space for the first order system is 'HN = H y x HN . As shown in [1], the
restriction of the infinite dimensional system (2.5) to 1-/N X HN yields

MNN(t) - ANyN(t) + Nu(t) + FN(t)

A yIN N(O) =

or equivalently the finite dimensional Cauchy equation

N(t) A ANyN(t) + B u(t) + FN(t) (3.1)

yN(O) =yN

Explicit descriptions of the mass and stiffness matrices AIN and AN as well as detailed defi-
nitions of the control matrix b dnd the force vector FN(t) can be found in [1]. The 2N x 1vector yN1 n n)=M T n

contains the approximate state coefficients while u(t) = (u 1(t),... u(t))T contains the s con-
trol variables. The periodic finite dimensional control problem is then to find u E L2 (O, r)
which minimizes

JN(u) = 1 J' {(QNyg(t), yN(t))RN + (Ru(t), u(t)) } dt N + n - 1

where yN solves (3.1), -T is the period, R is an s x s diagonal matrix and ri > 0, i = 1,...s
is the weight on the controlling voltage into the th patch.

The nonnegative definite matrix QN can be chosen so as to emphasize the minimization
of particular state variables as well as to create windows that can be used to decrease
state variations of certain frequencies. From energy considerations as discussed in [1], an
appropriate choice for QN in this case is

QN = MND

where MN again is the mass matrix, and the diagonal matrix E) is given by

E) = diag [d IT , d2 In 1, d3 Im, d4 In - 1]

Here k , k = m, n - 1 , denotes a k x k identity and the parameters di are chosen to enhance
stability and performance of the feedback.

The optimal control is then given by

UN(t) = R- 1 (BV)T [r N(t) - lNYN(t)I



where [A is the solution to the algebraic Riccati equation

(A)'rll\'+ i -XI - I1B"NR-(BN)T'IIN + QN = 0 . (3.2)

For the regulator problen with periodic forcing function tN(t), rN(t) solves the linear dif-
ferential equation

,%"(t) = - [AN - BIR'Th'(BN)TNI]T V(t) + I N F N(t)

I.' N(0) = ,..V'(T )

while the optimal trajectory is the solution to the linear differential equation

Y N'(t) =A' [,- B-*"H-1(13V)"rlN ] N (t) + Nf-'( N)1',.;'(1) N ,'(t)
L ( ] ±(3.4)

y'(0) Y

4 Numerical Results

The general probleim under colsi(eration in the following examples is

Ott C 2 _-\- (x,y) E Q ,t > 0,
VO 11 = 0 Ya,) E I',t > 0,
00
-(t, X,0)= -wL,(tx) 0 < x < .6 ,t > 0,

OJ-2 02 U, _03w W
PbWtt + EI--1 +1--±

0X2 \ DX2  CD 0 2 0O2 [,K~d3j , (4.1)

d2(EI'j3 u(t) [II(x - all) - Il(x - a1, 2 )]) 41

-f pct (t, x,0) + f(t, x) 0< x< .6, t>O,

u!(, 0) w (t,0) =w(t,.6)= 6 0
OX = (t,.6) =0 t> 0

0(0,x,Y) = ,,(0,x y) = (OX) =W(0, ) = 0

The parameter choices a = .6 ri, t = 1 n, p." = 1.21 kg/n 3, c2 = 117649 m 2/sec2 ,
pb = 1.35 kg/rn, El = 73.96 Nmi, cl = .001 kg rn3/scc, K' = 82.9629, T = .0005 rn,
and d31 = 1.9 X 10- 10 m/V, are physically reasonable for a .6 m by 1 7n cavity in which the
bounding end beam has a centered piezoceramic patch. The beam is assumed to have width
and thickness .1 ,, and .005 in, respectively. For an undamped fixed-fixed beam with the
above dimensions and density, the natural frequencies of the first three modes are

f, = 73.2 hertz ,

h = 201.8 hertz

f3 = 395.6 hertz
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respectively. Likewise, for pressure oscillations in a cavity of this size, the natural frequencies
of the modes i!re given by I in where L i = I in the y-direction and
L = a = .6 in the x-direction. Note that Loth sets of frequencies are for the uncoupled
systems.

4.1 System Dynamics

In this example, we detcrinine the behavior of the uncontrolled coupled system when the
forcing function f is taken to be an impulse at tile center of the beam; that is,

j(t, x) = 6(x - .3)6(t)

From the response, the natural frequencies and dynamic behavior of tile system can be
determined and compared to those of the uncotmled beam and cavity. Note that from the
definitions of the component matrices and vectors, it follows immediately that the right hand
side vector F V(t) has elements given by

[ tB3)I(t)

where BP" denotes a modified cubic spline basis function. Thus 2K\ (t) is simply 'iven by

2 () = [0, 0, 1,4, 1, 0, 0'6(t). Note that this contribution is included only at time
7' = 0 after which the systeim is allowed to run unforced through time T = 20/75. This
temporal interval is sufficient for demonstrating the dynamic behavior of the system.

The beam and pressure responses obtained with in, = mi = 12 and n = 16 basis func-
tions at the points X = .3 and (X, Y) = (.3, .1) are plotted in Figure 3 with corresponding
frequency plots in Figure 4. FlroM Figure 3 it can be seen that due to the damping in the
beam, both the beam and pressure oscillations are gradually decreasing in mnagnitudle as the
system is allowed to run unforced. The frequency plots in Figure 4 indicate the presence
of several natural frequencies for tihe coupled system. Although one would expect these
frequencies to correspond in somen manner to the individual natural frequencies of the beam
and cavity, one must also note that the system (4.1) involves not only coupling between
the cavity and beam equations but also includes damping in the beam. Indeed, the system
responses at 65.9 and 387.8 hertz are slightly lower in frequency than the natural frequencies
of the first two symmetric modes of the undamped beam which have values of 73.2 and 395.6
hertz. The remaining resonant peaks are due to pressure oscillations in the cavity. The
responses at 181.3 and 3-13.9 hertz are slightly higher than the values of 171.5 and 343 , rtz
which are the first two natural frequencies in the y-direction for pwessure oscilla"ions in a
cavity of this size. A response at 519 hertz corresponding to the third harmonic (514 hertz)
in the y-direction cai, be seen if one considers data taken over the much shorter time inter-
val, [0,3/75]. ThiF response has very low energy however, and has died away long before
T = 20/75. As seen in Figures 11 and 18 of Sections -1.3 and 1.4, system oscillations at this
frequency are more pronounced when produced by a forcing function which is acting over a
longer temporal interval.
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The system response at 572.4 hertz corresponds to the uncoupled cavity frequency of
571.7 hertz for tte second x mode. Because the excitation is symmetric in x, one does not
see a response corresponding to the nonsym'netric first x mode having the frequency 285.8
hertz. It is more difficult to determine correspondences between higher frequency system
modes (600 hertz and above) and those of the uncoupled beam and cavity. This may in
part be due to higher frequency effects of coupling and damping. Finally, it should be noted
that the mode shapes for the coupled system as well as the natural frequencies are slightly
different than those of thle conu )onent beam and cavity; hence care must be taken when
describing the dynamiics of the coupled system in terms of the properties of the undamped
and uncoupled beani and cavity.

x 10l°  Uncontrolled Beam Displacement at X = 3

0.8

0.6

0.4

02

0
-0.2

-0.64 i

-0.8 -ivi
0 0.05 0.1 0.15 0.2 0.25

Time (sec)

X10 5 Unc ntrolled Pressure at (.3, 1)
4

~ 2 7'

S0 ~

3 L
-2

0 0.05 0.1 0.15 0.2 0.25

Time (sec)

Figure 3. The beam and pressure responses to a centered impact.

10



X10-11 Uncontrol~ed Frequency at X =.3
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Figure 4. Th'1e beanm and pressure frequency responses to a centered impact.



4.2 Resonant Excitation

In the following examples, tie effects of feedback control on the system (4.1) for various
forcing functions are described. The forcing function in this example is

f(t,x) = 2.04sin(1507rt)

which corresponds to a frequency of 75 hertz and hence is close to the natural frequency of
the first system mode which is 65.9 hertz (see Section 4.1). This models a periodic exterior
plane wave with a root mean square (rms) sound pressure level of 117 dB.

Control was implemented via a single centered piezoceramic patch covering 1/6 of the
beam length (see Figure 5). The quadratic cost functional parameters were taken to be
dl = d2 = d4 = 1, d3 = 10' and R = 10-6 with d3 of much larger magnitude than di,d 2

or d4 to emphasize the penalization of large pressure variations. When running the uncon-
trolled problem, the beam and pressure oscillations could be fully resolved with the choices
rn = my = 4 and n = 8. In the control problem however, a larger number of basis functions
was needed to fully resolve the early transient behavior and the results which follow were
obtained with the choices ni = my = 8 and n = 12. Note that this results in a total of 80
cavity and 11 beam basis functions.

.25 .35

0 .6

Figure 5. Acoustic chamber with one centered 1/6 length piezoceramic patch.

In order to solve for the optimal control and trajectory, it is necessary to solve not only
the algebraic Riccati equation (3.2), but also the trajectory equation (3.4) and the tracking
equation (3.3). The gains from the Riccati equation were calculated via Potter's method
(see [18]). Because numerical evidence indicated that the unconstrained solutions to the
trajectory and tracking equations were roughly periodic with period r = 1/75, the problems
were solved as initial value problems with starting values y(0) = 0 and r(10/75) = 0 rather
than as free boundary value problems. The choice for initial state is physically reasonable

12



while the choice to integrate backwards in time in (3.3) is made to reduce numerical instability
when solving the ODE system for rN(t).

The uncontrolled and controlled approximate beam displacements and acoustic pressures
(pN = pj4') at the points X = .3 and (X, Y) = (.3,.1) are plotted in Figure 6 for the
time interval [0, 10/75]. The uncontrolled solutions exhibit a beat phenomenon which re-
suits from the fact that the frequency of the forcing function is slightly greater than the
natural frequency of the first system mode. From this data, it can be determined that the
uncontrolled rms pressure at the point (X, Y) = (.3, .1) is Prms = 1.0957 N/rn2 . This yields
an uncontrolled interior sound pressure level of 94.6 dB. After a transient interval, the con-
trolled solutions are periodic and are maintained at a level which is approximately 10% of
that found in the uncontrolled case. The controlled rms pressuie is Prms = .125 N/nm2 and
the controlled interior sound pressure level is maintained at 75.8 dB which is a 18.8 dB
reduction.

The frequencies of the uncontrolled and controlled beam displacements and cavity pres-
sures are plotted in Figure 7 (note the differing scales in the plots). The uncontrolled beam
plot shows the presence of the forcing frequency as well as the slightly lower natural system
frequency while the uncontrolled cavity plot also shows a slight system response at 180 hertz.
The controlled response in both cases shows only the presence of the forcing frequency.

To further illustrate the state reduction with feedback control, the uncontrolled and
controlled acoustic pressures at the times T = 1/75, 2/75, 6/75 and 10/75 are plotted in
Figure 9. These are shown as surface plots illustrating the pressure amplitude distribution
throughout the acoustic cavity. These results are representative of those found throughout
the time interval [0, 10/75] and in conjunction with Figure 6, demonstrate that the pres-
sure and beam displacement are uniformly reduced and maintained at a very low level of
magnitude in spite of the periodic forcing function.

The controlling voltage u(t) is plotted in Figure 8. As expected, it is periodic with
period 1/75. It should be noted that the magnitude of u(t) remains less than 60V which is
a physically reasonable voltage to put into the piezoceramic patches.
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lO-S Uncontrolled Beam Displacement at X = .3 xlO . Controlled Beam Displacement at X - .38 8
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Figure 6. Uncontrolled and controlled beam displacements and pressures at the points
X = .3 and (X, Y) = (.3,.1) throughout the time interval [0,10/75].
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4.3 Multiple Resonant Excitation

The forcing function for this example is

f(t, x) = 2.04 [sin(1507rt) + sin(7907rt)]

and hence excites the first and fourth system modes which have natural frequencies of 65.9
and 387.8 hertz, respectively (see Section 4.1). This models a periodic plane wave with a
sound pressure level of 120 dB.

Control was again implemented via a single centered piezoceramic patch covering 1/6
of the beam length as shown in Figure 5. The results reported below were obtained with
the choices d, = d2 = d4 = 1, d3 = 10' and R = 10-6 for the quadratic cost functional
parameters. Several other combinations were tried but these reported values provided a good
balance between the amount of pressure reduction obtained and the amount of controlling
voltage applied to the piezoceramic patches.

From numerical tests, it was found that the uncontrolled and controlled beam and pres-
sure oscillations could be resolved with the choices m. = m = 10 and n = 16 and the
following results were obtained with these values. The need for a larger number of basis
functions than were used in Section 4.2 reflects the presence of higher frequency oscillations
which resulted from the higher frequency component of the forcing function.

The time interval of interest in this example was taken to be [0, 9/75] and the uncontrolled
beam displacements and acoustic pressures at the points X = .3 and (X, Y) = (.3,.1) are
plotted in Figures 10 and 14. Control was implemented at time T = 0 to obtain the
controlled solution plots in Figure 10 while the corresponding plots in Figure 14 show the
results obtained when the system was allowed to run uncontrolled until T = 3/75 = .04
seconds at which point the controlling voltage was applied. The frequency plots in Figure 11
correspond to the results in Figure 10. The primary frequencies in both the uncontrolled
and controlled problems are the driving frequencies of 75 and 395 hertz. In the uncontrolled
case, there is also a low energy system response at 519.5 hertz (recall that the third harmonic
in the y-direction for the uncoupled cavity is at 514 hertz). By comparing the scales in the
plots of Figure 11, one can see that the energy in the controlled frequency responses is
approximately one tenth of that found in the uncontrolled responses.

From Figure 10, it is seen that when control is started at T = 0, the solutions are
periodic and are maintained at a level which is about 12% of that found in the uncontrolled
case. By calculating the root mean square pressures, it was determined that at the point
(X, Y) = (.3, .1), the uncontrolled sound pressure level is 97.75 dB whereas the controlled
sound pressure in this case is maintained at a level of 78.93 dB. The two dimensional surface
plots in Figure 13 show spatial slices of the uncontrolled and controlled pressures at the
times T = 1/75,3/75,5/74 and 9/75 for the case when control was started at T = 0. These
plots in conjunction with those in Figure 10 show that even in the case of strong multiple
frequency input, the pressure and beam displacement are uniformly reduced and maintained
at a very low level throughout the time period. They also demonstrate that the small near
field acoustic response which remains near the beam quickly decays as one moves further
into the cavity.

The controlling voltage u(t) obtained with control starting at T = 0 is plotted in
Figure 12. As in Section 4.2, it is periodic although in this case, it also reflects the high
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frequency contributions of the forcing function. The magnitude remains below 70V which
again, is a physically reasonable voltage to apply into the piezoceramic patch. We remark
that this voltage can be decreased without any loss of control by using longer centered
patches.

As seen in Figure 14, the implementation of control at T = 3/75 = .04 seconds implies
that the control scheme is starting with an initial beam displacement of -2.4 x 10- m at
X = .3 and an initial pressure of 1.8 N/rn2 at (X, Y) = (.3, .1). By T = .06 however, both
the beam displacement and pressure have been reduced to the levels obtained when the
controlling voltage was applied at T = 0 (see Figure 10), and the solutions are maintained at
this level throughout the rest of the time interval. The controlling voltage u(t) for this case
is plotted in Figure 15. As expected, it is quite large when the control is initially applied but
quickly decreases and is periodic with magnitude less than 70V throughout the second half
of the time interval. The magnitude of the controlling voltage can again be reduced by using
longer centered patches. These results demonstrate that this methodology is useful not only
for maintaining a low level of pressure oscillations throughout the time interval, but also for
reducing pressure oscillations which have been allowed to build up in the cavity.
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Figure 10. Uncontrolled and controlled beam displacements and pressures at the points
X = .3 and (X, Y) = (.3, .1). Control is started at T = 0.
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X = .3 and (X, Y) = (.3, .1). Control is started at T = 3/75 = .04 seconds.
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4.4 Off-Resonant Excitation

In this example, the forcing function was taken !,) be

f(t,x) = 2.04 sin(470irt)

with a frequency of 235 hertz which is half way between the natural frequencies of the first
and fourth system modes. As noted in Section 4.2, this models a periodic plane wave with
an rms sound pressure level of 117 dB.

Control in this example was implemented via a single centered piezoceramic patch cov-
ering 1/2 of the beam length as shown in Figure 16. As in the previous examples, sev-
eral combinations of the quadratic cost functional parameters were tried with the choices
di = d2 = d4 = 1, d3 = 104 and R = 10-6 providing a good balance between the amount
of controlling voltage applied to the piezoceramic patches and the amount of reduction in
pressure fluctuations which could be obtained. Multiple patches of shorter length were also
tried but it was found that for the symmetric forcing function being applied, the single patch
provided the best control.

11I

.15 .45

0 .6

Figure 16. Acoustic chamber with one centered 1/2 length piezoceramic patch.

From numerical tests, it was determined that the uncontrolled solutions could be resolved
with m, = my = 8, n = 12 basis functions whereas m, = my = 12, n = 16 were needed to
resolve the controlled beam and pressure oscillations due to the transient high frequency re-
sponses to the controlling voltage. The results below were obtained with these discretization
sizes.

From Figure 18, it can be seen that the uncontrolled responses exhibit not only the
driving frequency but also transient excitations at 65.9, 181.6, 345.2, 387.7 and 519.5 hertz
which are due to the natural frequencies of the coupled system. The presence of the multiple
frequencies can also be seen in the plots of the uncontrolled beam displacement and pressure
which are given in Figure 17. The time interval in both cases was taken to be [0, 16/2351.
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The control plots in Figure 17 demonstrate that after a transient phase of about three
periods, both the beam displacement and pressure are significantly reduced and maintained
at a low magnitude throughout the rest of the time interval. At the point X, Y) = (.3, .1),
the uncontrolled sound pressure level is 82.8 dB whereas the controlled sound pres,1ure level is
reduced 15.7 dB to 67.1 dB. The frequency plots of the controlled solutions (see Figure 18)
show that the dominant response is the driving frequency of 235 hertz. These plots also
indicate the presence of a higher frequency response to the control at 519.5 hertz which is
much more significant than in the uncontrolled case. This response is transient however, and
results taken further out in time indicate that by approximately 48 periods, it is gone. We
have also found that when longer patches are used (for example, 2/3 length patches), the
transient high frequency response is much smaller than that observed here.

To further illustrate the state reduction with feedback control via the piezocer-mic
patches, the uncontrolled and controlled acoustic pressurs at the times T = 1/235,
T = 3/235, T = 10/235 and T = 16/235 are plotted in Figure 20. These results reinforce
those in shown in Figure 17 which show that after a transient phase in which the controlled
pressure undergoes high frequency, low magnitude oscillations, the pressure field settles into
the frequency of the driving force and is uniformly maintained at a low level throughout the
time interval.

Figure 19 contains a plot of the controlling voltage, u(t). It too is periodic and remains
at a magnitude of less than 25 volts.
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Figure 17. Uncontrolled and controlled beam displacements and pressures at the points
X = .3 and (X, Y) = (.3, .1) throughout the time interval [0, 16/2351.

23



i10-6 UncontroUed Ream Frequency at X =.3 X10"7  
ContrLled Beam Frequency at X - .3

31

24 ~~ AMPLIDExO61 8 FAmrLxrUDE X10712.5

21

1.5

i4

I

0.5

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Hertz Ifertz

UncontroUed Cavity Frequency at (XY) = (.3,. 1) ControUed Cavity Frequency at (X,Y) = (.3..1)
0.4 0.045

0.35 - A.APLT-UDE 0.04 A:PLUDEI II
0.23, 4 0.03

0,025
02-

o2 _ 0.02

0.150,015-

o0.11oo f\ IJ i\ o.os
0 - 0

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Her. lertz

Figure 18. Uncontrolled and controlled beam and cavity frequencies.

The Optimal Control
25 -

20

15

10

I 1S 0-
Z
> -5

-10

-15

.20

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Time (sec)

Figure 19. The optimal control zt(t).

24



T - 1/235 T - 1/235

Un~onrolled PreCSSwe Controlled Presswe

-.4947 
1

T =3/235 T =3/235

.6 .. 6 Controlled Preusewe

6 .6Controlld Presw

Uncontrolled Pressr

Figure~~~~Cotole 20Pncnroldsnscnroldrrssrs

.2325



5 Conclusion

In this work we continued the study of active noise control techniques for 2-D structural
acoustics problems. The example which we considered consists of a 2-D interior cavity with
an active beam at one end. A perturbing force due to an exterior noise source is placed on
the beam thus causing fluctuations in the interior acoustic pressure field and hence unwanted
noise. Control is implemented in the model via piezoceramic patches on the beam which are
excited in a manner so as to produce pure bending moments. Approximation techniques are
discussed and by writing the resulting system as an abstract Cauchy equation, the problem
of reducing interior pressure fluctuations can be posed in the context of an LQR time domain
state space formulation.

Several examples are considered which demonstrate both modeling and control results.
The first example illustrates the dynamic behavior of the coupled system. By looking at
the natural frequencies, it can be seen that although many of the features of the uncoupled
and undamped beam and cavity are present, some variations occur in the system of interest
since it involves not only coupling between the cavity and beam equations but also includes
damping in the beam.

In the rest of the examples, harmonic forcing functions of various frequencies but mod-
eling a uniform pressure excitation are applied to the beam, and results demonstrating
the reduction of interior cavity pressure and beam displacement under feedback control are
presented. Although the forcing functions were chosen to strongly excite various system
frequencies, the results show that input of the optimally controlling voltage u(t) uniformly
reduces both the pressure and the beam displacement and maintains them at a very low level
of magnitude throughout the time intervals of interest. Moreover, as indicated by the results
of Section 4.3, this methodology is useful not only for maintaining a low level of pressure
oscillations throughout the time interval, but also for reducing pressure oscillations which
have been allowed to build up in the cavity.

Numerical results have indicated that for a 1-D uniform periodic forcing function, the
best results can be obtained with one centered patch with the amount of control increasing
with increasing patch length. By increasing the length of the patch, one can also, in many
cases, decrease the amount of voltage needed to reduce interior pressure oscillations. In
the examples that we have considered however, the magnitude of the controlling voltage
has always remained in a range which is physically reasonable to apply to the piezoceramic
patches.

ACKNOWLEDGEMENT: The authors would like to express their sincere appreciation
to H.C. Lester of the Acoustics Division, NASA Langley Research Center, for input during
numerous discussions concerning the modeling of the acoustic problem.

26



References

[1] H.T. Banks, W. Fang, R.J. Silcox and R.C. Smith, Approximation methods for
control of acoustic/structure models with piezoceramic actuators, Submitted to J.
Intelligent Material Systems and Structures.

[2] H.T. Banks and K. Ito, A unified framework for approximation in inverse problems
for distributed parameter systems, Control-Theory and Advanced Technology, 4
(1988), 73-90.

[3] H.T. Banks and K. Ito, Approximation in LQR problems for infinite dimensional
systems with unbounded input operators, Proc. Conf. on Optimization, Haifa,
1992, to appear.

[4] H.T. Banks, S.L. Keeling, and R.J. Silcox, Optimal control techniques for active
noise suppression, Proc. 27th IEEE Conf. on Decision and Control, Austin, Texas,
1988, 2006-2011.

[5] H.T. Banks, S.L. Keeling, and C. Wang, Linear quadratic tracking problems in
infinite dimensional Hilbert spaces and a finite dimensional approximation frame-
work, LCDC/CCS Rep. 88-28, October, 1988, Brown University.

[6] R.L. Clark, Jr., C.R. Fuller and A. Wicks, Characterization of multiple piezoelec-
tric actuators for structural excitation, J. Acoust. Soc. Amer., 1992, to appear.

[7] E.F. Crawley and E.H. Anderson, Detailed models of piezoceramic actuation of
beams, AIAA Conf. Paper 89-1388-CP, 1989, 2000-2010.

[8] G. Da Prato, Synthesis of optimal control for an infinite dimensional periodic
problem, SIAM J. Control Opt., 25 (1987), 706-714.

[9] E.K. Dimitriadis, C.R. Fuller and C.A. Rogers, Piezoelectric actuators for dis-
tributed noise and vibration excitation of thin plates, Proc. 8th ASME Conf. on
Failure, Prevention, Reliability and Stress Atialysis, Montreal, i989, 223-233.

[10] F. Fakhroo, Legendre-Tau approximation for an active noise control problem,
Ph.D. Thesis, May, 1991, Brown University, Providence, RI.

[11] C.R. Fuller, C.A. Rogers and H.H. Robertshaw, Active structural acoustic control
with smart structures, SPIE Conference 1170 on Fiber Optic Smart Structures
and Skins II, Boston, MA 1989.

[12] C.R. Fuller, S.D. Snyder, C.H. Hansen and R.J. Silcox, Active control of interior
noise in model aircraft fuselages using piezoceramic actuators, AIAA Thirteenth
Aeroacoustics Conference, Tallahassee, FL 1990.

[13] H.C. Lester and C.R. Fuller, Active control of propeller induced noise fields inside
a flexible cylinder, AIAA Tenth Aeroacoustics Conference, Seattle, WA, 1986.

27



[14] I. Malecki, Physical Foundations of Technical Acoustics, Translated by I. Bellert,
Pergamon Press, New York, 1969.

[15] P.M. Morse and K.U. Ingard, Theoretical Acoustics, McGraw-Hill, New York,
1968.

[16] J. Pan and C.H. Hansen, Active control of noise transmission through a panel into
a cavity. I: Experimental Study, J. Acoust. Soc. Am., 90 (3), (1991), 1488-1492.

[17] J. Pan and C.H. Hansen, Active control of noise transmission through a panel into
a cavity. III: Effect of the actuator location, J. Acoust. Soc. Am., 90 (3), (1991),
1493-1501.

[18] J.E. Potter, Matrix quadratic solutions, SIAM J. Appl. Math., 14 (1966), 496-501.

[19] R.J. Silcox, S. Lefebvie, V.L. Metcalf, T.B. Beyer and C.R. Fuller, Evalua-
tion of piezoceramic actuators for control of aircraft interior noise, Proc. of the
DGLR/.4IAA 14th Aeroacoustics Conf., Aachen, Germany, May 11-14, 1992.

28



REPORT DOCUMENTATION PAGE Form Approved
I DOMB No. 0704-0188

Public reporting burden for this coliection of information is etimated to average ehour er response. including the time for reviewing instructions, searching existing data sources,
gatherng and maintaining the data needed. and completing and rev .wieg the collection of Information Send comments regarding this burden estimate or any other aspect Of this
collection of -ntormatlon. ncluding suggestions for reducing this Ourden to Wash ngton eacadduarters Services. Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204. Artngton. VA 22202-4302. and to the Office of Management and Budget. Paperiwork Reduction Protect (0704-0158), Washington. OC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
I Aril 1992 Contrco Rp=nnrt"

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

THE MODELING AND CONTROL OF ACOUSTIC/STRUCTURE INTERACTION C NAS1-18605
PROBLEMS VIA PILZOCERAMIC ACTUATORS: 2-D NUMERICAL

EXAMPLES WU 505-90-52-01
6. AUTHOR(S)

H. T. Banks
R. J. Silcox
R. C. Smith

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATIONREPORT NUMBER
Institute for Computer Applications 

in Science

and Engineering ICASE Report No. 92-17
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-189639

Hampton, VA 23665-5225 ICASE Report No. 92-17

11. SUPPLEMENTARY NOTES Submitted to Proc. for the ASME 1992
Langley Technical Monitor: Michael F. Card Winter Annual Meeting Symposium on
Final Report Active Control of Noise and Vibra-

tion

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 64, 66

13. ABSTRACT (Maximum 200 words)

The modeling and active control of acoustic pressure in a 2-D cavity with a flexible
boundary (a beam) is considered. Control is implemented in the model via piezoceram-
ic patches on the beam which are excited in a manner so as to produce pure bending
moments. The incorporation of the feedback control in this manner leads to a system
with an unbounded input term. Approximation techniques are discussed and by writing
the resulting system as an abstract Cauchy equation, the problem of reducing interior
pressure fluctuations can be posed in the context of an LQR time domain state space
formulation. Examples illustrating the dynamic behavior of the coupled system as
well as demonstrating the viability of the control method on a variety of problems
with periodic forcing functions are presented.

14. SUBJECT TERMS 15. NUMBER OF PAGES

30
feedback control in structural acoustics models; piezoceramic 16. PRICE CODE
actuators; LQR state space formulation A03

t7. SECURITY CLASSIFICATION tI. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prrescrbed by ANSI Sld Z39-1S

296-102

NASA-Iargli, 1992


